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ABSTRACT

Objective: Several types of evidence have shown that auditory networks are dysfunctional in schizophrenia (Sch) and bipolar 
disorders (BD). Auditory cortices show abnormalities in hallucinations or during remission. This study aimed to assess resting-state 
connectivity of auditory cortices in Sch and BD.

Method: Patients with BD-1 (n=28), BD-2 (n=21), Sch (n=30), and healthy controls (HC, n=30) were enrolled into the study. A 3 
Tesla whole-body magnetic resonance imaging (MRI) system with a 32-channel phase-array head coil was used to acquire the MRI 
data. T1-weighted anatomical and gradient-echo based Echoplanar Imaging sequences were used. MATLAB and Freesurfer 
software packages were used for data analyses. Connectivity alterations within the auditory network guided our further seed-
based connectivity analysis.

Results: The left angular gyrus volume was decreased in Sch and BD-2 groups. The supramarginal gyrus had hyperconnectivity 
with the medial prefrontal cortices and decreased connectivity with the medial superior temporal gyrus (STG) in the BD-1 and 
BD-2 groups. The left superior temporal sulcus (STS) had increased connectivity with the bilateral posterior cingulate cortex in 
BD-1 and BD-2 and increased connectivity with the dorsal prefrontal cortices in the Sch group. The STS had increased connectivity 
with the medial STG in the BD-1 and Sch groups, whereas connectivity decreased in the BD-2 group.

Conclusion: These findings suggest that functional connectivity of resting-state networks are altered in BD and Sch. Auditory 
network alterations may predispose to dysfunctional auditory information processing. Further studies are needed to determine 
the relationship between symptoms and auditory network dysfunction.
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INTRODUCTION

The developmental trajectory of the auditory cortices 
extends until late adolescence and is vulnerable to 
disruption (1,2). Several lines of evidence have 
demonstrated that auditory cortices are among the most 
volatile brain regions in patients with schizophrenia and 
bipolar disorder. Pressured speech, flight of ideas, 
auditory hallucinations, and verbal memory deficits are 
the symptom domains related with the auditory cortices 
in schizophrenia and bipolar disorder (2). Several 
histopathological examinations (3-5) and neuroimaging 
studies (6-17) have consistently reported abnormalities in 
auditory cortices in schizophrenia and bipolar disorder.

The primary auditory cortex (PAC), Wernicke’s Area 
(WA), the inferior parietal lobe (IPL), and Broca’s Area 
(BA) and their anatomical connections constitute the 
auditory networks, notably including two central 
heteromodal association areas (i.e. Wernicke’s and Broca’s 
Areas) (18). Different units within the auditory cortices 
participate in processing different features of auditory 
input (19). Hence, the integration between the components 
of the auditory cortices by hardly-wired networks at 
diverse scales is crucial for such distributed and 
collaborative procedures of auditory perception. Two main 
pathways, the ventral and dorsal streams, are associated 
with semantic and spatial processing, respectively (20).

Resting-state functional connectivity is based on the 
correlations of spontaneous brain activity while the 
brain is not engaged in any task. Correlations of low-
frequency fluctuations are interpreted as evidence of 
intrinsic, functional connections between brain regions. 
As auditory hallucinations typically emerge at rest, it 
has been shown that the correlation of the brain activity 
shows that resting-state functional connectivity 
abnormalities of the auditory cortices are significantly 
higher in hallucinating patients, in comparison to non-
hallucinating patients with schizophrenia (21,22). 
Shinn et al. (23) have observed differences between 
schizophrenia patients with and without auditory 
hallucinations in resting-state functional connectivity 
of the left superior temporal gyrus. The authors 
reported that left superior temporal gyrus (STG) had 
hyperconnectivity with cortical regions of the forebrain 
that are involved in speech, memory formation, 
executive functions, and self-referential thoughts. On 
the other hand, abnormalities of the auditory cortices 
are not limited to auditory hallucinations in 
schizophrenia and bipolar disorder. Auditory emotional 
(24,25) and cognitive (10-12) processing deficits are 
observed in schizophrenia and bipolar disorder. These 

findings may indicate a dysfunction in auditory 
networks even when the patients are in remission (10).

Independent component analysis (ICA)-based 
resting-state functional Magnetic Resonance Imaging 
(fMRI) studies have reported abnormal connectivity 
between auditory cortices and other brain regions in 
schizophrenia and bipolar disorder (26,27). Voxel-wise 
functional connectivity analyses are the sum of ICA-
derived within- and between-network analyses (28). 
Preprocessing steps and statistical analyses differ 
between the methods. Voxel-wise correlation analysis is 
able to show correlation between time series of brain 
regions and the voxel of interest. Therefore, this study 
aimed to assess seed-based resting-state functional 
connectivity between auditory cortices and other brain 
regions in schizophrenia and bipolar disorder.

METHOD

This study was approved by the local Ethics Committee. 
All participants provided written informed consent 
before enrollment. Consecutive outpatients were invited 
to participate in the study and accepting patients were 
enrolled, including 30 (12 women) patients with 
schizophrenia, 28 (15 women) with bipolar I disorder 
(BD-1), 21 (12 women) with bipolar II disorder (BD-2) 
and 30 (17 women) healthy controls (HC). Diagnoses 
were checked by Structured Clinical Interview According 
to DSM-IV (SCID-1) (29). Young Mania Rating Scale 
(YMRS) (30,31), Hamilton Depression Rating Scale 
(HDRS) (32,33), Brief Psychiatric Rating Scale (BPRS) 
(34), Scale for the Assessment of Negative Symptoms 
(SANS) (35,36), Scale for the Assessment of Positive 
Symptoms (SAPS) (37,38), and Edinburgh Handedness 
Inventory (39) were the clinical evaluation tools 
(administered by MIA). MRI scans were performed 
immediately after the clinical assessments. All patients 
included in this study were clinically stable. Exclusion 
criteria were any history of brain surgery or major 
physical trauma, diabetes mellitus, hypertension, metallic 
implants that are not compatible with MRI sessions, 
hearing disabilities, and any psychiatric comorbidity or 
lifetime history of substance abuse. We enrolled patients 
regardless of psychotropic medications; only patients on 
benzodiazepines were excluded.

Data Acquisition

A 3 Tesla whole-body magnetic resonance imaging 
(MRI) system (Magnetom Tim Trio, Siemens AG, 
Erlangen Germany) with a 32-channel phase-array 
head coil was used to acquire the MR data at the 
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UMRAM (National Magnetic Resonance Research 
Center, Ankara, Turkey). T1-weighted anatomical 
MRIs (MPRAGE sequence, 256x256 voxels, TR: 2000 
msec, TE: 3.02 msec, FOV read: 215, FOV phase: 100, 
slice thickness: 0.84, 192 slices) were acquired for 
diagnostic and localization purposes. A gradient echo-
based EPI sequence was used to acquire functional MRI 
data (TR: 2000 msec, TE:40 msec, Flip Angle: 71° and 3 
mm isometric-voxel resolution, 64x64x32 matrix size 
with 90 volumes). Patients were instructed to close their 
eyes but not to sleep during the scan.

Data Analysis

Brain extraction (FSL 5.0 BET) was performed on 
T1-weighted anatomical images and linear 
transformation matrices for their individual functional 
spaces were calculated. Automatic cortical parcellation 
was performed using Freesurfer v5.3.0 (40) and 14 
auditory regions of interest (ROIs) defined previously 
were labeled for each subject (Figure 1a). The first two 
volumes of functional data were discarded and slice-scan 
time correction was performed. Motion correction was 

done by using rigid body linear registration (FSL 5.0 
MCFLIRT). A band-pass filter was applied to restrict 
signal variations in between 0.01 and 0.1 Hz (41). 
Auditory regions in anatomical space registered to 
individual functional spaces. Mean time courses were 
extracted for each of the 14 previously labeled ROIs. 
Pairwise functional connectivity changes of 14 ROIs were 
investigated. Within-auditory network analysis revealed 
connectivity changes in SMG and primary auditory 
cortices (Table 3). The ROIs with significant pairwise 
connectivity changes were used as seeds (Figure 1a) and a 
whole-brain connectivity map with these seed ROIs was 
further investigated. The connectivity of the seeds (ROI 9, 
13 and 14) that had significant whole-brain connectivity 
differences between the groups is presented in Figure 2.

Statistical Analysis

All processing routines were performed using MATLAB 
R2016b. One-way ANOVA was conducted on pairwise 
correlation values to assess functional group differences. 
Functional data was smoothed with Gaussian kernel 
(FWHM=7mm); then whole-brain connectivity maps 
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Figure 1: Brain regions of interest demonstrated in one subject (a), One-way ANOVA results of pairwise correlations (b). p<0.05 thresholded 
table (c). Four separate subplots show inter-hemispheric pairwise correlations (between left and right hemispheres) and intra-hemispheric 
(between left and left, right and right) correlations. Color bars represent p values.
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were calculated using those regions as a seed (42). T-test 
with FDR (q≤0.05) correction was used to get seed-
based connectivity maps. Statistical analyses of the 
volumes were performed separately. Other statistical 
analyses were performed with SPSS 22 (IBM Corp., 
Armonk, NY). Distribution characteristics of the data 

were checked with Kolmogorov-Smirnov and Shapiro-
Wilk tests. Variables with Gaussian distribution were 
compared with t test and one-way ANOVA. Categorical 
variables were compared with chi-square test. 
Homogeneity of variances was checked with Levene’s 
homogeneity of variance test for post-hoc tests. Tukey 
test was performed for variables with homogeneous 
variances, whereas Tamhane test was performed for 
non-homogeneous variances. The level of statistical 
significance for p values was 0.05.

RESULTS

Sociodemographic and clinical characteristics of the 
patient groups are presented in Table 1. There were no 
significant age and sex differences between patient groups 
and healthy subjects. BPRS scores differed between the 
groups: The schizophrenia group had a significantly 
higher score than the bipolar I disorder (BD-1) (p<0.001) 
and bipolar II disorder (BD-2) (p<0.001) groups.

ANOVA showed that there were volume differences 
between groups at the following locations: right 
hemisphere lateral STG (ROI-5), left angular gyrus (ROI-
8), and left STG (ROI-14) (Table 2). Post-hoc comparison 
showed that the mean volume of the left angular gyrus in 
the schizophrenia and bipolar II disorder groups was 
significantly smaller than in healthy controls. The left 
STG in the schizophrenia group was significantly smaller 
than in the healthy control group. The difference between 
the groups in the lateral part of the STG in the right 
hemisphere (ROI-5) was at trend level in post-hoc 
comparison (schizophrenia<healthy controls, p=0.0578; 
schizophrenia<bipolar 1 disorder, p=0.061).

Pairwise correlations between seed regions showed 
that the most significant functional connectivity 
changes are at SMG (ROI-2 and ROI-9) and STG (ROI-
7 and ROI-14) (Table 3). In addition, whole brain 
connectivity maps revealed that hyperconnectivity was 
found between left SMG and medial-prefrontal cortices 
(mPFC) in patients with bipolar disorder (Figure 2a). 
On the other hand, the SMG had decreased connectivity 
with the left medial STG in bipolar I disorder and 
bipolar II disorder. The left STS (ROI-13) had increased 
connectivity with the bilateral posterior cingulate cortex 
(PCC) in bipolar I disorder and bipolar II disorder and 
increased connectivity with the dorsal prefrontal 
cortices in the schizophrenia group (Figure 2b). The left 
lateral superior temporal gyrus had increased 
connectivity with the medial STG in the bipolar I 
disorder and schizophrenia groups and decreased 
connectivity in the bipolar II disorder group (Figure 2c).

Figure 2: Group-level connectivity maps by using (A) left 
supramarginal gyrus (ROI-9; Brodmann 40), (B) medial left 
superior temporal sulcus (ROI-13; Brodmann 41, 42) and (C) 
lateral left superior temporal gyrus (ROI-14; Brodmann 21, 22) 
as seeds. Color bars represent Pearson Correlation values (r>0.5). 
Connectivity maps of each group are presented in A-I, B-I, and 
C-I. Significant connectivity differences between groups are pre-
sented in A-II, B-II and C-II. Changes of connectivity values are 
presented as increase (red-yellow) and decrease (blue-green) with 
t scores [|t|>2] in comparison to the HC group. HCs: Healthy 
Controls, BD-I: Bipolar I Disorder, BD-II: Bipolar II Disorder, 
Sch: Schizophrenia. There were significant connectivity differen-
ces between the groups at ROI-9 (A-II: BD-I vs. HC, BD-II vs. 
HC), ROI-13 (B-II: BD-I vs. HC, BD-II vs. HCs, Sch vs. HCs) and 
ROI-14 (C-II: BD-I vs. HCs, BD-II vs. HCs, Sch vs. HCs).
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Table 1: Demographic and clinical variables of the participants

BD-1 BD-2 Sch HCs χ2/t/F p

Mean SD Mean SD Mean SD Mean SD

Age** 35.32 9.12 38.38 13.84 38.67 12.46 32.77 10.65 1.66 0.181

n n n n

Sex (women) 15 12 12 17 2.23 0.527

Mean SD Mean SD Mean SD Mean SD

Education** 10.89 4.86 12.10 4.10 9.30 3.24 10.20 3.36 2.26 0.085

Age at onset** 23.57 8.66 24.71 9.63 22.45 6.35 0.47 0.625

Duration of the  
disease* 92.21 107.69 153.43 126.48 147.52 132.13 2.02 0.140

Number of  
hospitalizations 1.36 1.77 0.43 0.68 2.37 5.13 2.09 0.130

Number of 
Episodes

	 Total 7.82 5.46 8.50 6.87 0.145 0.705

	 Mania*** 2.77 2.18 3.50 3.52 0.751 0.391

	 Depression 4.22 3.42 4.90 4.15 0.376 0.543

BPRS 2.43 2.86 2.24 1.72 7.67 4.29 24.56 <0.001

HDRS 3.46 3.51 3.38 3.20 0.007 0.932

YMRS 1.07 1.61 1.48 1.50 0.803 0.375

SANS 11.00 6.66

SAPS 14.13 8.56
One-way ANOVA, SD, Chi-square and t tests. BD-1: Bipolar 1 Disorder, BD-2: Bipolar 2 Disorder, Sch: Schizophrenia, HCs: Healthy Controls. BPRS: Brief Psychiatric Rat-
ing Scale, HDRS: Hamilton Depression Rating Scale, YMRS: Young Mania Rating Scale, SANS: Scale for the Assessment of Negative Symptoms, SAPS: Scale for the 
Assessment of Positive Symptoms, *Months, **Years, ***Hypomania for BD-2

Table 2: Regions with significant volume changes across groups. Significant ROIs are shown highlighted in yellow and 
marginally significant ones in orange

ROIs HS Regions p-Value Post-hoc Comparisons

1 Right Angular Gyrus (AG) 0.3960 -

2 Right Supramarginal Gyrus (SMG) 0.5104 -

3 Right Precentral sulcus (PCS) 0.2896 -

4 Right Frontal operculum (FO) 0.1814 -

5 Right Lateral superior temporal gyrus (L-STG) 0.0578
HC>Sch (p=0.0117)

HC>BD-1 (p=0.0610)

6 Right Superior temporal sulcus (STS) 0.1388 -

7 Right Superior temporal gyrus (STG) 0.5903 -

8 Left Angular Gyrus 0.0223
HC>Sch (p=0.0246)

HC>BD-2 (p=0.0082)

9 Left Supramarginal Gyrus 0.3976 -

10 Left Frontal operculum 0.0557 -

11 Left Frontal operculum 0.0822 -

12 Left Lateral superior temporal gyrus 0.0920 -

13 Left Superior temporal sulcus 0.0680 -

14 Left Superior temporal gyrus 0.0185 HC>Sch (p=0.0027)

HC: Healthy Controls, Sch: Schizophrenia, BD-1: Bipolar 1 Disorder, BD-2: Bipolar 2 Disorder
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DISCUSSION

In this study, the most significant volume difference 
between the groups was in the superior temporal 
cortices. The gray matter volume was smaller in the left 
hemisphere AG, lateral and medial STG in patients with 
schizophrenia. Interestingly, there was a difference 
between the bipolar disorder subgroups: the effect on 
the angular gyrus was only significant in bipolar I 
disorder, and similarly the lateral STG (Wernicke’s 

Area) was only affected significantly in bipolar I 
disorder. Connectivity differences were similar between 
bipolar I disorder and bipolar II disorder groups. There 
was increased connectivity between the left SMG – 
mPFC and the left STS – PCC in the bipolar disorder 
subgroups. These groups had decreased connectivity 
between the left lateral STG and the bilateral medial 
STG. Decreased functional connectivity observed 
bilaterally in precentral gyrus and inferior parietal lobes 
was only seen in the bipolar II disorder group (Table 3, 
Figure 2). The schizophrenia group had increased 

Table 3: Pairwise connectivity differences across groups are shown as mean and standard error plots in the “Groups” 
column, post-hoc tests shown where pairwise group comparisons have significant differences

ROIs Groups p Post-Hoc

ROI-2 – ROI-9 0.0091
BD-1>BD-2 (p=0.060)

HCs>BD-2 (p=0.0052)

ROI-2 – ROI-14 0.0170
HCs>Sch (p=0.035)

BD-1>Sch (p=0.080)

ROI-6 – ROI-12 0.0369
BD-1>BD-2 (p=0.0395)

HCs>BD-2 (p=0.055)

ROI-8 – ROI-13 0.0372 Sch>BD-2 (p=0.0244)

ROI-7 – ROI-14 0.0427 ~

ROI-3 – ROI-5 0.0491 BD-2>HCs (p=0.0359)

BD: Bipolar 1 Disorder, BD2: Bipolar 2 Disorder, Sch: Schizophrenia, H: Healthy Controls
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connectivity between left superior temporal sulcus and 
bilateral dorsal prefrontal cortices. 

A connectivity change between lateral and medial 
STG in bipolar disorder might indicate a deficit in the 
integration of processed auditory information from 
specialized tonotopic fields of the primary auditory 
cortices, which may lead to impaired auditory information 
processing. Ambiguity of auditory information may lead 
to deficits in cognitive or emotional auditory information 
processing. Abnormal activation and connectivity 
changes in components of the auditory networks may be 
related with several cognitive mechanisms. Deficient 
cortical auditory processing, emotional motivation, 
beliefs, cognitive bias, intentional alteration of attention 
to auditory inputs and insight might be related with 
auditory cortex abnormalities (43,44). In addition, the 
mPFCs were associated with selective attentional and 
executive networks (45), and hyper-connectivity between 
the left STG and mPFC may reflect increased coupling in 
higher cognitive networks for auditory processing. The 
mPFC and PCC are components of the default mode 
network, and dysconnectivity in this network may reflect 
self-referential thought disorders (46). These findings are 
in line with a hypothesis postulating that dysfunction of 
association areas might play an important role in 
cognitive decline in schizophrenia and bipolar disorder 
(47). Since the auditory system is related to various 
symptoms and cognitive dysfunction in schizophrenia 
and bipolar disorder (2), dysconnectivity between the 
auditory cortices might be related with the symptoms and 
deficits involved. This study was performed in resting 
state; task-based studies may investigate the association 
more reliably. On the other hand, the symptoms are 
perpetual and are observed even at rest. Therefore, 
resting-state activity may also reflect disturbances in 
spontaneous activity.

A substantial body of evidence has demonstrated 
volumetric decay in gray matter (14), cortical folding 
abnormalities (48-50) and deteriorated laminar structure 
(3) in the superior temporal cortices in schizophrenia. 
Moreover, structural alterations (51,52), volumetric loss 
(15), metabolic abnormalities (53,54) and functional 
alterations (13,23,47,55,56) of the auditory cortices were 
related to auditory hallucinations in patients with 
schizophrenia. Enhanced resting-state activity of the 
primary auditory cortices and auditory hallucinations 
were predisposed by aberrant connectivity between the 
default-mode network and auditory cortices. While the 
schizophrenia patients were not categorized according to 
hallucinations, the whole group had abnormal connectivity 
in both schizophrenia and bipolar disorder groups.

Volumetric loss in bipolar I disorder was observed 
in the STG, and this finding is in line with a meta-
analysis in bipolar disorder (57). Moreover, auditory 
processing abnormalities (6,7,11,12,16) are more severe 
in psychotic patients with bipolar disorder than in non-
psychotic patients (11). The bipolar II disorder group 
had a significant volumetric decrease in the AG. The 
AG region has been evaluated as a physiologic trait 
marker of depression, mania and euthymia in bipolar II 
disorder (58). The bipolar II disorder group had 
decreased connectivity between Wernicke’s Area and 
the primary auditory cortices, while this finding was 
not observed in bipolar I disorder.

Limitations of this study are its small sample size; 
some of our results showed trend level significance and 
thus should be tested further in larger samples. The 
cross-sectional nature of our study did not allow us to 
perform analyses for clinical factors and medications. 
In addition, longer functional scan times are preferable 
to understand the attentional alterations better. Clinical 
variables such as medications of psychosis (for bipolar 
disorder) could not be controlled.

Overall, the schizophrenia group was more prone to 
displaying volumetric changes in the auditory cortices. 
On the other hand, functional alterations were observed 
in the bipolar disorder groups. These findings suggest 
that differences in the functional connectivity of resting-
state networks in bipolar disorder and schizophrenia are 
related with functional auditory connections. 
Development of the auditory cortices continues until late 
adolescence, and neurobiological effects of schizophrenia 
and bipolar disorder may disrupt the development of the 
auditory networks (1). Impairment of the auditory 
networks may predispose for either symptoms or 
cognitive dysfunction. The accumulation of further 
evidence may help to determine abnormalities in 
networks for specific disorders. Further studies 
considering symptoms and cognitive background of 
these disorders may contribute to our understanding of 
the neurobiology of psychiatric conditions.
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